Using Python for Introductory Econometrics

Using Python for Introductory Econometrics - Daniel Brunner

Using Python for Introductory Econometrics


  • Introduces the popular, powerful and free programming language and software package Python
  • Focus: implementation of standard tools and methods used in econometrics
  • Compatible with "Introductory Econometrics" by Jeffrey M. Wooldridge in terms of topics, organization, terminology and notation
  • Companion website with full text, all code for download and other goodies

Topics:

  • A gentle introduction to Python
  • Simple and multiple regression in matrix form and using black box routines
  • Inference in small samples and asymptotics
  • Monte Carlo simulations
  • Heteroscedasticity
  • Time series regression
  • Pooled cross-sections and panel data
  • Instrumental variables and two-stage least squares
  • Simultaneous equation models
  • Limited dependent variables: binary, count data, censoring, truncation, and sample selection
  • Formatted reports using Jupyter Notebooks

Citeste mai mult

transport gratuit

208.47Lei

208.47Lei

Primesti 208 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului


  • Introduces the popular, powerful and free programming language and software package Python
  • Focus: implementation of standard tools and methods used in econometrics
  • Compatible with "Introductory Econometrics" by Jeffrey M. Wooldridge in terms of topics, organization, terminology and notation
  • Companion website with full text, all code for download and other goodies

Topics:

  • A gentle introduction to Python
  • Simple and multiple regression in matrix form and using black box routines
  • Inference in small samples and asymptotics
  • Monte Carlo simulations
  • Heteroscedasticity
  • Time series regression
  • Pooled cross-sections and panel data
  • Instrumental variables and two-stage least squares
  • Simultaneous equation models
  • Limited dependent variables: binary, count data, censoring, truncation, and sample selection
  • Formatted reports using Jupyter Notebooks

Citeste mai mult

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo