The Babylonian Theorem: The Mathematical Journey to Pythagoras and Euclid

The Babylonian Theorem: The Mathematical Journey to Pythagoras and Euclid - Peter S. Rudman

The Babylonian Theorem: The Mathematical Journey to Pythagoras and Euclid

Rudman explores the facisnating history of mathematics among the Babylonians and Egyptians. He formulates a Babylonian Theorem, which he shows was used to derive the Pythagorean Theorem about a millennium before its purported discovery by Pythagoras.
A physicist explores the history of mathematics among the Babylonians and Egyptians, showing how their scribes in the era from 2000 to 1600 BCE used visualizations of plane geometric figures to invent geometric algebra, even solving problems that we now do by quadratic algebra. Rudman traces the evolution of mathematics from the metric geometric algebra of Babylon and Egypt-which used numeric quantities on diagrams as a means to work out problems-to the nonmetric geometric algebra of Euclid (ca. 300 BCE). From his analysis of Babylonian geometric algebra, the author formulates a Babylonian Theorem, which he demonstrates was used to derive the Pythagorean Theorem, about a millennium before its purported discovery by Pythagoras. He also concludes that what enabled the Greek mathematicians to surpass their predecessors was the insertion of alphabetic notation onto geometric figures. Such symbolic notation was natural for users of an alphabetic language, but was impossible for the Babylonians and Egyptians, whose writing systems (cuneiform and hieroglyphics, respectively) were not alphabetic. This is a masterful, fascinating, and entertaining book, which will interest both math enthusiasts and students of history.
Citeste mai mult

transport gratuit

188.07Lei

188.07Lei

Primesti 188 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Indisponibil

Descrierea produsului

Rudman explores the facisnating history of mathematics among the Babylonians and Egyptians. He formulates a Babylonian Theorem, which he shows was used to derive the Pythagorean Theorem about a millennium before its purported discovery by Pythagoras.
A physicist explores the history of mathematics among the Babylonians and Egyptians, showing how their scribes in the era from 2000 to 1600 BCE used visualizations of plane geometric figures to invent geometric algebra, even solving problems that we now do by quadratic algebra. Rudman traces the evolution of mathematics from the metric geometric algebra of Babylon and Egypt-which used numeric quantities on diagrams as a means to work out problems-to the nonmetric geometric algebra of Euclid (ca. 300 BCE). From his analysis of Babylonian geometric algebra, the author formulates a Babylonian Theorem, which he demonstrates was used to derive the Pythagorean Theorem, about a millennium before its purported discovery by Pythagoras. He also concludes that what enabled the Greek mathematicians to surpass their predecessors was the insertion of alphabetic notation onto geometric figures. Such symbolic notation was natural for users of an alphabetic language, but was impossible for the Babylonians and Egyptians, whose writing systems (cuneiform and hieroglyphics, respectively) were not alphabetic. This is a masterful, fascinating, and entertaining book, which will interest both math enthusiasts and students of history.
Citeste mai mult

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo