Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python

Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python - Peter Bruce

Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python


Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.

Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.

With this book, you'll learn:

  • Why exploratory data analysis is a key preliminary step in data science
  • How random sampling can reduce bias and yield a higher-quality dataset, even with big data
  • How the principles of experimental design yield definitive answers to questions
  • How to use regression to estimate outcomes and detect anomalies
  • Key classification techniques for predicting which categories a record belongs to
  • Statistical machine learning methods that "learn" from data
  • Unsupervised learning methods for extracting meaning from unlabeled data
Citeste mai mult

transport gratuit

380.73Lei

Sau 38073 de puncte

!

Fiecare comanda noua reprezinta o investitie pentru viitoarele tale comenzi. Orice comanda plasata de pe un cont de utilizator primeste in schimb un numar de puncte de fidelitate, In conformitate cu regulile de conversiune stabilite. Punctele acumulate sunt incarcate automat in contul tau si pot fi folosite ulterior, pentru plata urmatoarelor comenzi.

Livrare in 3-5 saptamani

Descrierea produsului


Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.

Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.

With this book, you'll learn:

  • Why exploratory data analysis is a key preliminary step in data science
  • How random sampling can reduce bias and yield a higher-quality dataset, even with big data
  • How the principles of experimental design yield definitive answers to questions
  • How to use regression to estimate outcomes and detect anomalies
  • Key classification techniques for predicting which categories a record belongs to
  • Statistical machine learning methods that "learn" from data
  • Unsupervised learning methods for extracting meaning from unlabeled data
Citeste mai mult

De pe acelasi raft

De acelasi autor

Parerea ta e inspiratie pentru comunitatea Libris!

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one