Mathematical Logic

Mathematical Logic - Heinz-dieter Ebbinghaus

Mathematical Logic

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe- matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con- sequence relation coincides with formal provability: By means of a calcu- lus consisting of simple formal inference rules, one can obtain all conse- quences of a given axiom system (and in particular, imitate all mathemat- ical proofs). A short digression into model theory will help us to analyze the expres- sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.
Citeste mai mult

transport gratuit

420.67Lei

420.67Lei

Primesti 420 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului

What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathe- matical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is Godel's completeness theorem, which shows that the con- sequence relation coincides with formal provability: By means of a calcu- lus consisting of simple formal inference rules, one can obtain all conse- quences of a given axiom system (and in particular, imitate all mathemat- ical proofs). A short digression into model theory will help us to analyze the expres- sive power of the first-order language, and it will turn out that there are certain deficiencies. For example, the first-order language does not allow the formulation of an adequate axiom system for arithmetic or analysis. On the other hand, this difficulty can be overcome--even in the framework of first-order logic-by developing mathematics in set-theoretic terms. We explain the prerequisites from set theory necessary for this purpose and then treat the subtle relation between logic and set theory in a thorough manner.
Citeste mai mult

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo