Investigations into the Predicate Calculus

De (autor): Oiva Ketonen

Investigations into the Predicate Calculus - Oiva Ketonen

Investigations into the Predicate Calculus

De (autor): Oiva Ketonen

Oiva Ketonen (1913--2000) was the closest to a student the creator of modern proof theory Gerhard Gentzen ever had. Their encounter took place in 1938--39 in Göttingen, with Ketonen hoping to receive a suitable topic for a doctoral dissertation and Gentzen instead deeply immersed in attempts at proving the consistency of analysis. Ketonen's thesis of 1944, his only work in logic, introduced what is today called the G3-sequent calculus. It is his best-known discovery, a sequent calculus for classical propositional logic the logical rules of which are all invertible. Few read his thesis, the results of which were instead made available through a long review by Paul Bernays. Ketonen's calculus is the basis of Evert Beth's tableau method and of the sequent calculi in Stephen Kleene's influential {\it Introduction to Metamathematics}. A second result was a sharpening of the midsequent theorem, by which the number of quantifier inferences with eigenvariables could be minimized. The existence of a weakest possible midsequent followed, in the sense that if any midsequent is derivable, a weakest one is. Turning this into a contrapositive, Ketonen found a purely syntactic method for proofs of underivability that he applied to affine plane geometry. His result, in modern terms, was a positive solution to the word problem for the universal fragment of plane affine geometry, with a syntactic proof of underivability of the parallel postulate from the rest of the affine axioms as a corollary.

Citește mai mult

transport gratuit

140.53Lei

140.53Lei

Primești 140 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Indisponibil

Descrierea produsului

Oiva Ketonen (1913--2000) was the closest to a student the creator of modern proof theory Gerhard Gentzen ever had. Their encounter took place in 1938--39 in Göttingen, with Ketonen hoping to receive a suitable topic for a doctoral dissertation and Gentzen instead deeply immersed in attempts at proving the consistency of analysis. Ketonen's thesis of 1944, his only work in logic, introduced what is today called the G3-sequent calculus. It is his best-known discovery, a sequent calculus for classical propositional logic the logical rules of which are all invertible. Few read his thesis, the results of which were instead made available through a long review by Paul Bernays. Ketonen's calculus is the basis of Evert Beth's tableau method and of the sequent calculi in Stephen Kleene's influential {\it Introduction to Metamathematics}. A second result was a sharpening of the midsequent theorem, by which the number of quantifier inferences with eigenvariables could be minimized. The existence of a weakest possible midsequent followed, in the sense that if any midsequent is derivable, a weakest one is. Turning this into a contrapositive, Ketonen found a purely syntactic method for proofs of underivability that he applied to affine plane geometry. His result, in modern terms, was a positive solution to the word problem for the universal fragment of plane affine geometry, with a syntactic proof of underivability of the parallel postulate from the rest of the affine axioms as a corollary.

Citește mai mult

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Ma abonez image one
Ma abonez image one
Accessibility Logo