Feature Engineering for Machine Learning

De (autor):

Feature Engineering for Machine Learning

Feature Engineering for Machine Learning

De (autor):

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you'll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.

Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.

You'll examine:

Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms
Natural text techniques: bag-of-words, n-grams, and phrase detection
Frequency-based filtering and feature scaling for eliminating uninformative features
Encoding techniques of categorical variables, including feature hashing and bin-counting
Model-based feature engineering with principal component analysis
The concept of model stacking, using k-means as a featurization technique
Image feature extraction with manual and deep-learning techniques
Citeste mai mult

transport gratuit

326.33Lei

Sau 32633 de puncte

!

Fiecare comanda noua reprezinta o investitie pentru viitoarele tale comenzi. Orice comanda plasata de pe un cont de utilizator primeste in schimb un numar de puncte de fidelitate, In conformitate cu regulile de conversiune stabilite. Punctele acumulate sunt incarcate automat in contul tau si pot fi folosite ulterior, pentru plata urmatoarelor comenzi.

Livrare in 3-5 saptamani

Descrierea produsului

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you'll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.

Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.

You'll examine:

Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms
Natural text techniques: bag-of-words, n-grams, and phrase detection
Frequency-based filtering and feature scaling for eliminating uninformative features
Encoding techniques of categorical variables, including feature hashing and bin-counting
Model-based feature engineering with principal component analysis
The concept of model stacking, using k-means as a featurization technique
Image feature extraction with manual and deep-learning techniques
Citeste mai mult

De pe acelasi raft

De acelasi autor

Parerea ta e inspiratie pentru comunitatea Libris!

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one