Bayesian Statistics for the Social Sciences

Bayesian Statistics for the Social Sciences
*Utilizes the R interface to Stan--faster and more stable than previously available Bayesian software--for most of the applications discussed.
*Coverage of Hamiltonian MC; Cromwell's rule; Jeffreys' prior; the LKJ prior for correlation matrices; model evaluation and model comparison, with a critique of the Bayesian information criterion; variational Bayes as an alternative to Markov chain Monte Carlo (MCMC) sampling; and other new topics.
*Chapters on Bayesian variable selection and sparsity, model uncertainty and model averaging, and Bayesian workflow for statistical modeling.
Descrierea produsului
*Utilizes the R interface to Stan--faster and more stable than previously available Bayesian software--for most of the applications discussed.
*Coverage of Hamiltonian MC; Cromwell's rule; Jeffreys' prior; the LKJ prior for correlation matrices; model evaluation and model comparison, with a critique of the Bayesian information criterion; variational Bayes as an alternative to Markov chain Monte Carlo (MCMC) sampling; and other new topics.
*Chapters on Bayesian variable selection and sparsity, model uncertainty and model averaging, and Bayesian workflow for statistical modeling.
Detaliile produsului